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Thermodynamic formalism for field-driven Lorentz gases
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We analytically determine the dynamical properties of two-dimensional field-driven Lorentz gases within the
thermodynamic formalism. For dilute gases subjected to an isokinetic thermostat, we calculate the topological
pressure as a function of a temperaturelike paramgtgy to second order in the strength of the applied field.

The Kolmogorov-Sinai entropy and the topological entropy can be extracted from a dynamical entropy defined

as a Legendre transform of the topological pressure. Our calculations of the Kolmogorov-Sinai entropy exactly

agree with previous calculations based on a Lorentz-Boltzmann equation approach. We give analytic results for
the topological entropy and calculate the dimension spectrum from the dynamical entropy function.
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[. INTRODUCTION dynamic formalism in two spacial dimensions are presented
in Sec. V. In Sec. VI we calculate dynamical properties from

In dynamical systems theory the Lorentz gas acts as ge thermodynamic pressure and we close with some con-
paradigm allowing to address fundamental issues of nonequkyyding remarks in Sec. VL.

librium processes. Recently, dynamical quantities of this sys-

tem such as Lyapunov exponents or Kolmogorov-Sinai en-

tropies in a nonequilibrium steady state have been calculated Il. THERMODYNAMIC FORMALISM

analytically[1,2]. Systems such as the Lorentz gas in a non-

equilibrium steady state can be modeled on the microscopic Our starting point is thedynamical partition function

level by introducing a so-called thermostat which removegvhich weighs points in phase space by the local stretching

the dissipated heat from the system. Assuming that fluids cafactors A(f,v,t) for trajectory bundles starting at phase

be regarded as hyperbolic systems on a microscopic levelpace point$r,v) and extending over a time The stretch-

one can relate the dynamical quantities to viscosities or difing and contraction factors characterize the behavior of an

fusion coefficients[3-5]. This connection is based upon a infinitesimal volume in phase space under the dynamics.

relation between phase space contraction rates and entropypically, this volume will grow in some directions and

production. shrink in others. Then the local stretching factor is the factor
In the 1960s and 1970s Sinai, Ruelle, and Bowen develby which the projection of the volume onto its unstatde-

oped a formalism for dynamical system theory which due topanding directions will increase over time Similarly, the

its striking similarity to Gibbs ensemble theory was given thecontraction factor is the factor by which the projection of the

namethermodynamic formalisii6—8]. This formalism is ap- same volume onto its stabl@ontracting direction is de-

plied to hyperbolic systems and like in ordinary statisticalcreased over time Then, the partition function is defined by

physics a partition function is defined which is constructed

by giving points in phase space a_particular Weight. From Z(B,Y) :fd,tL(F,zD[A(F,J,t)]l_ﬁ, (1)

this a central quantity, the topological pressure, is derived

which is the dynamical system analog of the Helmholtz freeWhere a temperaturelike paramegis introduced to empha-

gﬂgrr]g;/'s ;rgn}zomi %%23_”8";61[ gaglr?t(r)c? fugrcilhoen toprglp;erit_lessize the similarity to ordinary statistical physics. The integra-
9 €KS) Py POIOg ion is over an appropriate stationary measure.

cal entropy are obtained through the pressure and its deriva- . . ,
tive with respect to a temperaturelike paramggeAlso de- From Eq.(1) the topological pressur(p) is obtained as

rivable are dimension and entropy spectra and, for systems 1
with escape, escape rates. P(B) = |im¥ In Z(B,1). 2
The paper is organized as follows. In Sec. Il we briefly i

recapitulate some properties of the thermodynamic formal©On introducing the Laplace transford(g,z) = £{Z(B,1)},

ism. Section IIl introduces the field-driven Lorentz gas andthe calculation ofP(3) greatly simplifies. From the defini-

Sec. IV the concept of the radius of curvature. Calculationsion of the Laplace transform we see ti#t3,z) only con-

for the field-driven random Lorentz gas within the thermo-verges ifz stays smaller than a particular value, the radius of
convergence, which is given byg=Ilim,,.(1/t)in Z(B,t)
=P(B). Thus, the topological pressure is given by the lead-

*Present address: Theoretische Polymerphysik, Universitaing singularity of 2(3,2) [7].

Freiburg, Freiburg, Germany. Electronic address: In analogy to the standard procedures of statistical physics
oliver.muelken@physik.uni-freiburg.de we can define @ynamical entropy function(j8) as the Leg-
"Electronic address: H.vanBeijeren@phys.uu.nl endre transform of the topological pressure, i.e.,

1539-3755/2004/69)/0462039)/$22.50 69 046203-1 ©2004 The American Physical Society



O. MULKEN AND H. v. BEIJEREN PHYSICAL REVIEW E69, 046203(2004

B =P(p) - L. 3 o
B
For long times the local stretching factors are approxi-

mately given by the exponent of the sum of positive (¢
Lyapunov exponentsy;, multiplied by time,A =expt=\;).
Therefore, it can be shown that the entropy function defined
by Eg. (3) can be identified for special values @f with
dynamical properties. Fg8=0, h(8) equals the topological
entropy hy,, whereas forg=1 it equals the KS entrophics

which equals the sum of positive Lyapunov exponetjts;, FIG. 1. lllustration of the separation of two nearby trajectories

see for instance Ref$4,5,q. ' r(t) andr”(t) for (a) no external field angb) with an external field,
For systems where trajectories can escape, escape ratgs text for details.

can be extracted from the topological pressure. E.g.Bfor
=1 the topological pressuiié(B) equals -y, wherey is the

escape rate while the relationshigP{8)/ 9| 5-1=3\; re- geometric arguments relating this to the RQ&13-15.
mains valid. The intersection point &(3) with the 8 axis  gjnce the light particle moves id dimensions, and in tan-
can be related to the partial Hausdorff dimension, i.e., th@yent space the direction of the flow is neither expanding nor

fractal dimension of a line across the stable manifold of th%ontracting the unstable manifofthe subspace of expand-
attractor (see Ref.[10] for detaily, while the intersection ing directions on the energy shell in tangent spaiseof

point of the tangent &®(1) with the 5 axis is associated with  gimensiond- 1 (provided the driving field is not too strong

() = ot

(a) without field (b) with field

nearby trajectories in the course of time. Sinai has given

the partial information dimensiofi0,11. It may be represented by the set of all infinitesimal displace-
ments in position space, orthogonal to the direction of the
lll. FIELD-DRIVEN LORENTZ GAS flow; the stretching factor for largemay be identified with

the expansion factor of an infinitesimal volume in this sub-

We study the thermodynamic formalism for the dilute, ; ) . )
pace. This expansion factor in turn may be expressed in

field-driven Lorentz gas without escape. This model consist f the ROC
of two species of particles. Heavy, immobile particles of ra- err'gs 0 1e h : h tic plot of the radi f ¢
dius a are placed at random positions, while point particles. \gure 1 Snows a schematic piot of the radius of curvature
of massm and charga move in between them. The interac- in two spacial dimensiongin configuration spaogein the

tion between light and heavy particles is modeled by elasti¢aSes V.V'th .and without an ex'gernal field. We measure Fhe
collisions and the heavy particles are not allowed to overla separation in a plane perpendicular to the reference trajec-

An external electric field introduces a force which acceler-tory' Let the spacial difference between two trajectories be

ates the moving particles in the direction of the field and an&(t) and the difference in velocityu(t) after some time.

isokinetic thermostat prevents the system from heating ug N€S€ Vectors satisfy the differential equation
indefinitely. This thermostat keeps the kinetic energy and

thus the speed of each moving particle constaif,12]. dor(t) .
Then, the equations of motions are given by dt du(t). (5)
T ¢ -
r=v, v= EE_ av, (4) The solution of this defines the ROC tensor through the re-
lationship

where a:qé-J/mv2=vxe/v, with e=qE/mw. This choice

assures that the kinetic energy is kept constant. The electric .1 N R

field is taken to point in thex direction. or(t) = ;P(t’&(o)) - ou(t). (6)
Utilizing a Lorentz-Boltzmann equatio(LBE) approach

Van Beijerenet al. have calculated the Lyapunov spectrum ) oo

of field-driven dilute Lorentz gases in two and three spacia n the absenc_e of external fields, wlﬂa being constant, the

dimensiond1,2]. They did so by extending the usual LBE so . OC tensor simply is of the form(t)—vt1+_p(0). I_Espema_lly

as to include the so-called radius of curvatdrOC) tensor in d=2, wherep reduces to_a sca_llap,(t) S'”_‘p'y 'S the_ dis-

p (see Sec. Iy. The resulting extended Lorentz-Boltzmann [&Nnce of the two nearby trajectories to their mutual intersec-

equation(ELBE) for the probability distribution of, v, and tion point, as |I|ustrateq in Fig. 1. Its sign IS positive 'f. the

p reduces to the usual LBE by integrating oyerFrom the intersection is located in the past and negative if it is in the

ELBE the KS entropy is obtained as a steady state ensembfHture- .
average. Py y One sees that already under free streaming the depen-

dence of the ROC on its initial conditions becomes relatively
less important as time increases. This is even much more so,
if the free streaming is interrupted by collisions. In that case

In order to describe the local stretching factor entering thehe ROC just before and just after a collision are related in
partition function we have to measure the separation of twal=2 by

IV. RADIUS OF CURVATURE
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2 between subsequent collisions may be assumed to be distrib-

acosd’ ) uted according to the same exponential function and all scat-
tering angles also follow the same simple distribution. In the

which may easily be generalized to higher dimensiongpresent case, where the moving particle still has constant
[2,16]. Here p_ is the precollisional ROCp, the ROC di- speed, we will make the same assumptions, but now the free
rectly after the collision, ang the angle between the veloc- motion in between collisions is not along straight lines any-
ity vector at the collision and the outward normal to themore.
scatterer at the point of incidence. Now, the point to notice is  For simplicity we from now on will restrict ourselves to
that for dilute systems typicallp* is of the order of the the case ofd=2, although the generalization to higher di-
inverse mean free path, which is much smaller than the seenensions is fairly straightforward. As in R¢fL6] we divide
ond term on the right-hand side of E). Therefore, to up the time interval0,t] into subintervaldt,_;,t], with t,
leading order in the density of scatterers this term may behe instant of theth collision of the moving particle within
ignored. This implies that the initial value pfalready gets this time interval. Let the total number of collisions Bé
washed out after one collision. If one cannot use this lowthent,=0 andt,.,=t. The total stretching factor can be fac-
density approximation, still a few collisions suffice to make torized into a product as
the ROC independent of its initial value. In the sequel of this
paper we will use low density approximation, so we set

pit=pt+

N
A =]]A,, (11)
-1_ 2 r=0

P+ acosg (8)

where A, = A(7) is given by Eq.(9), with 7,=t,—t,_;. For
Combining Egs.(5) and (6) one finds that the stretching obtaining an explicit expression for this we have to solve the
factor over a timer now may be expressed in terms of the differential equation describing the time evolution of the

ROC tensor as ROC, which is of the forni1,2]
_ ! -1 - €
A(r)=exp v | dtdefp™(D)]]|. 9) p=v + pe COS h+ p°— Sirt 6, (12
0 v
From this the KS entropy may be obtained as whered is the angle between the velocity vectdt) and the

v [t external field. As initial condition we will use the low den-
hes= Iim;f drdefp (D] =v(de(p )  (10)  sity approximationp, =acos¢,/2, with ¢, the collision
o angle of therth collision. From the equations of motion it

The brackeX: - )¢ dEnotes an average over a stationaryfollows that 6 obeys the differential equatiofi=—e sin 0,
nonequilibrium distribution on phase space. Its equivawhich has the solution

lence to a time average requires ergodicity of the motion

of the moving particle on the chaotic attractor. About the 6(t, ") = arccofsinh(et + )], « =In[cot(§'/2)]. (13)
validity of this even less is known than about ergodicity in
equilibrium, in the absence of a driving field. In our cal-
culations we will actually make plausible assumptions’.
about the time average rather than using the phase spaEég' 1b
average.

For calculating the increase of the stretching factor mea- p=v+ pe tanhet + k) + pP—————.
sured from directly after a collision toé(ii(irectly after the sub- v cost(et + k)
sequent one, one has to integrate] pieft)] over this time .
interval and insert the result into E(®). For N uncorrelated We find for the ROC
collisions taking place over time the corresponding stretch-

Here,#*=6(0,6;) is the angle between the external field and
the velocity direction directly after theth collision, compare
). With this solution foré(t) we rewrite Eq.(12) as

(14)

v coshk sinh x - ep,

ing factor is given by the product of th€ individual stretch- sinh(et + k) — ;
ing factors. The KS entropy is calculated by dividing the o(t) _v cosHet + k) v coshk + fp+ sinh « _
logarithm of the stretching factor blyand then taking the € v coshk sinh k- ep,

long time limit[2,5,14. 1+ sinf(et+ K)v coshk + ep, sinh k
(15

V. THERMODYNAMIC FORMALISM FOR FIELD-

DRIVEN LORENTZ GAS Inserting this into Eq(9) we find, to second order i,

In Ref. [16] Van Beijeren and Dorfman present calcula- Ay =A§DA§Z): (16)
tions ind dimensions for the dilute random Lorentz gas with-
out an external force. There, the dynamical partition function or
is calculated by assuming that subsequent collisions are com- Aﬁl) =—I, a7
pletely uncorrelated. Under this assumption all free times Pr,
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272 . -
A§2>=exp[-% cosgf + = K(1-9sif ) | (18 M(B.2.6) =V f dryre #IW AP (24)
0

Note that the above equations may also be used=@r but
with po_and 65 given by the initial values of respectivelyg
att=0.

For obtaining the topological pressure one has to substi-
tute the above results into E¢L1), raise this to the power (MINB,z,6") = f dg*M(B,z,67,6M(6"), (25
(1-pB), and average over the configurations of scatterers. For
simplifying this average it turns out to be useful to rearrange

with 6(7, ¢*) defined in Eq.(13). The operatorsﬁt and Eﬁtf
are defined by

Eg. (11) as . .
N e 1Bz, -)=fd6+/\/lf(ﬁ,z, g1(6), (26)
A(t) = UTNAE\Z/){H FJ\/—r:| Po,s (19)
r=1 where integration limits of th@* integrations depend on the
where sign of 7 in the & function in Eq.(23) and are given in the

Appendix. Furtherl denotes the unit operator apd-]™ the
operator inverse.

From the above equations the rightmost singularityZof
readily follows as the value af for which the largest eigen-
The reduction to the independent variables |mpI|ed here f0|va|ue of the operatof)’j’t equa|s unity_ For zero field this
lows from Eq.(8) combined with the relationship eigenvalue problem is trivial: the leading eigenfunction is the

2= 0 — O % (21) unit function, the eigenvalue is obtained easily, and the re-

rewoo e sulting topological pressure coincides with that found in Ref.
and 6, may be expressed in terms 6f , and 7,_, through [16].AFor small nonzero field one has to proceed by expand-
Eq. (13). ing 9, the leading eigenfunctiof, and the leading eigen-
A further simplification can be made by passing to thevalue u in powers of the field strength, i.e.,

Laplace transformZ(3,z) of the dynamical partition func-
tion. Since, in the limit of largé, the topological pressure o = MmO + em® + M, (27)
equals the logarithm of the stretching factor per unit time, it
may be identified as the rightmost singularity of this Laplace

UT,
I, =0(r,6}.,6)=——
Pr+1),

AP, (20)

transform. It has to be real, as the stretching factor is real and f=10+fM+ @), (28)
positive definite. Assuming independence of all free flight
times 7; and scattering angleg; one finds straightforwardly w=p®+ eu®+ 24 (29)

that Z(B,z) may be obtained as
Then Eﬁtf:,uf is solved by standard perturbation methods

2Z(B,2) = > dgy--- f deng(ﬂ,z, oy using a Fourier series expansion fori.e.,
N=0
ol b by -1 f=al) + i a)) cognd) + % by sin(ng*),  (30)
X rI:IlM(B'Z' Onr+1s 0/\/—r)pOJr =1 =1 n '
S with i=0,1,2.
= > (Mo (B 2, ) The details of the solution of this eigenvalue equation are
N=0

given in the Appendix. Here we just give the resulting eigen-
={Sﬁtf[1— 95?]_1136}}(,3'2, ). 22) value u to second order in the field strength,

w(B,2) = p9(B,2) + Eu?(B,2)

Here the operatorss\%f and M are defined as the Laplace

transforms of the configurational averages of the appropriate I 1 r B+1 (2 -
powers ofvTNAj\Z,) andI'(r, 6.1, 6,), respectively. Specifi- v \1 B\ 2 2 2-8)
cally, one has =v a 8
- 2 ZBF(_"' 1)(7""2)2_’3
~ " (o ” CcoS ¢ 2
M(B,z2,6",6%) :f drve V”] dg— B 105-2) )
0 —al2 B-1)(B-2 /3—12}
X|1+é . (31
[ 480+ 2 5D

1
X6[¢— 5[6‘“ -60(r,6) 77]]
Now the Laplace transform of the dynamical partition func-
X [T(r,6", 6", (23)  tion is of the form
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r(%)r(ﬁ+ 1)r(z -B)

contracting trajectory

bundle T 2

1-
w(B,2)= V(%) 3
231“(5 + 1)(1/ +2)%7F

(B-1)(B-2)(B~- 8)]
. . 1-€ . 36
eXpaEﬂlr?glgaledory . { 48(v + 2)? (36)

Details are given again in the Appendix.
In the following section we will discuss the resulting to-

FIG. 2. lllustration of expanding and contracting trajectory pological pressure and related properties.

bundles for the two-dimensional field-driven random Lorentz gas. VI. DYNAMICAL PROPERTIES
_ - As stated in the preceding section the topological pressure
Z(B,2=C(B,2[1-u(B,2)], 32 :
(6,2)=C(B21-up2] (32) follows as the value of for which u(8,2)=1. To second

where the additional prefactorC, originating from Oorder ine this leads to

Mi¢(B,z,+), contains no singularities. (B-D(B-12
If we also want to obtain information about the contract- P(B) = Po(B) = 62;[;[?;4_”], (37
ing direction, e.g., the negative Lyapunov exponents, we 0
need to know the local contraction factors. For this we maywhere
consider the time reversed motion. Note that we will con- g+l 1(2-8)
sider the time reversed motion on the attractor for the “for- (l_ﬁ)r(z —,8)1“(%)1“( )
ward in time motion” and not the attractor of the time re- Py(B) = V(g) 2

versed motion. The contraction factors can be calculated by oo B g
considering contracting trajectory bundles instead of expand- 2°T 2 +1

ing ones[14], see Fig. 2. We keep the same notation as for

the forward in time motion, therefore collision precedes (38)

collision r—l in the tlme reversed motion. Hence the bOUnd'is the field-free value of the topo]ogica| pressure. The dy_
ary condition forp(t) in Eq. (14) is p(1)=p-=a cos¢/2,  npamical entropy then follows from E¢3) as
wherep_ specifies the ROC directly before a collisign the

forward in time motioi. The ROC still evolves in time ac- h(B) = P(3) —,80 P(B)
cording to Eq.14) for 0<t=<r. Like the expansion factors, B
one calculates the local contraction factors by using(Byg.
To second order ir this yields =hy(f) - ————
o 44 Py(B) + 7]
A =A7TAT (33 - -
P =AT A wl12-p2+ B(B-1)(B~12) IPy(p) . (39
Po(B) + v B
Aﬁl) - &, (34)  Where againhy(p) is the field-free value of the dynamical
Ty entropy.
We can perform similar calculations for the contracting
2 direction. Then we obtain the equivalent of the topological

A§2> = exp{— £ cos 0: + Tr (1+3 sir?ef) , (35 pressure and the dynamical entropy. Note that in the limit of
2 4 vanishing external field the topological pressure for the con-

. o e . tracting direction equals the one for the expanding direction.
with p, =a cosp, /2. In the limit of vanishing external field We ob%ain a P 9

the contraction factor is just the inverse of the stretching

2

factor. This is no longer true if we apply an external field. _ (B-1(B-98)
We see from Eqs(18) and (35) that differences occur in P7(B) =Po(B) + 62—48[P0(B) R (40)
the field dependent exponential.
To obtain a topological pressure for the contracting direc- &2
tions we have to solve a similar eigenvalue problem as for h (B)=hyB) + —F=—
the expanding directions. Since for the field-free case the 48[P0(/3)+ V]
inverse of the contraction factor equals the stretching factor, , . B(B-1)(B-8)dPy(p)
we solve the eigenvalue problem for the inverse of the con- X|8=p+ Po(B) + v Yk (41

traction factor. The resulting eigenvalue, which has to be set
equal to unity again, to second order in field strength be- Figure 3 shows the topological pressure and the dynami-
comes cal entropy as functions of the paramegerAs expected for
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0.08 —. ——T7

h 0.08|- -
top - "htop
0.06 0.06 n
2 = -
s T, | i
~ 0.04 = 0.04
@ 4
a 0.02 -
0.02
. ] 1 1
KS 0 .
0 0.03 .

0.02

FIG. 3. The topological pressu®(g) and thedynamicalen-
tropy h(B) for small fields and small densities of scatterers, ke.,
=0.001n=0.001p=1,a=1. 0.01

h[E(B)]

a system without escapB(B) vanishes foiB=1. We further
see thatP(pB) is a convex function.
A number of interesting dynamical quantities are related

to the dynamiqal gntropy(ﬁ) for spec.ial values of3. The FIG. 4. Dynamical entropyh[E(8)] as a function ofE(B)
KS entropyhys is given by the dynamical entropy f@i=1.  =-gpP(B)/3B for €=0.001,n=0.001,a=1, andv=1. The lower
From Eq.(39) we obtain panel is a closeup of the boxed region of the upper panel.
hoomnt =l 1o av)| 1_15 42 The maximum entropy, which is the topological entropy,
ks=A =vAmy=in\ o 48" (42 is always found fo3=0 as can be seen from E@). The KS

entropy is given by the value fog=1, where h[E(B)]
For the negative Lyapunov exponent we obtain, from Eq=E(B), again according to E¢3). In Fig. 4 a plot ofh[E(8)]
(41, vs E(B) is given. But notice that the descending parts of
h[E(B)] correspond to values g#<0.
—h(1)=A=- v[l e In(a—vﬂ : 15 (43) The dynamical entropy is related to a dimension spectrum
v 48 v D(a) with a=E(B), throughD(a)=h(a)/a [11]. Figure 5
L . shows the dimension spectrudj E(B)]. From this one can
As one should expect, these results coincide with those f\y the partial Hausdorff dimensidby as the maximum of
previous calculatlon$1_,2] based on the same assumpt_lonsD[E(,B)]_ For systems where trajectories cannot escape,
e e e e "l 1. Tis s clear becas e masmurdEE(5] 1
; .. obtained forP(B)=0, i.e.,8=1, for systems without escape.
: Nevg rﬁultds fOHO\.N flor t:\e top])colclgcl)c?zl entrcE)py,g\évhlch 'S Note that possible values of partial dimensions are restricted
glt\)/t?;n y the dynamical entropy fgg=0. From Eq/(39) we to the interval0, 1], see Sec. II. Furthermore, the full Haus-
dorff dimension isD" <32 D! where theD!, are the par-
- &l a 12 tial Hausdorff dimensions corresponding to all stable and
Piop = { } { } (44) unstable manifold$18].
The above results for the dynamical entropy allow to cal-
culate, respectively approximate, another dimension, the

That is, we obtain the zero-field limit results given in Ref. Kaplan-Yorke dimensiomyy. In general the Kaplan-Yorke

[16] with a correction which is quadratic in the field strength.
The equivalent of the topological entropy for the contract-
ing direction is obtained from Edq41) for =0, i.e.,

1/2 1/2
h—(o):[%] —v+6—2[i] . (45)

6| mw

We further calculate the dynamical entropy as a function
of E(B)=-dP(B)/dB [11]. E(B) equals the average of the
logarithm of the local stretching factor@n A)s, where the ol i w11 N
subscripta refers to the fact that in phase space initial points 0 o1 O'E(B)M 04 05
are weighted according to the stretching factors raised to the
power(1-p). For =1 this yields the average of the positive  FIG. 5. Dimension spectrum for=0.001,n=0.001,a=1, and
Lyapunov exponent. v=1. The maximum occurs fg8=1.
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dimension is given byDyy=n+3L \/|\n.q| where n is Van Beijeren and Dorfman have calculated KS entropies
given by the largest value for which., \;=0. Thus for the and topological entropies for general dimensiahfor the
two-dimensional Lorentz gas with constant energy we haveandom Lorentz gas without an external fi¢ldb]. Presently
one exponent equal to 0, one positive, and one negative, i.ene work on the extension of the present study to higher
we haveDyy=2+\*/|\7|. There are only three exponents dimensions. Subtleties exist because an external field com-
since the system is restricted to a three-dimensional hypegplicates the analytic calculation of the determinant of the
plane by the thermostat. From the KS entropies we see thatverse of the ROC tensor for higher dimensions quite a bit.
Dyy=~3-3€/ (8h25v), wherehﬁS is the KS entropy without However, the stretching factors can also be calculated by
external field. Since the exact full Hausdorff dimension andooking at the time evolution of the deviations in velocity,
therefore also the full information dimension cannot be ex-see Ref[14].
tracted from the partial dimensions we assume that the We also extended our studies to systems with open bound-
Kaplan-Yorke conjecture still holds. This is consistent with aries[21]. This allows for using the thermodynamic formal-
our present knowledge: becau@é;’”$2i3=1Dﬂ|):3 we still  ism to study the escape rate formali$g2], as well as di-
can haveD!"=Dyy. Let us further mention that the dimen- mension spectra for systems with escape. In the limigof
sional loss due to the external field, as expresseBpy is —1 comparison can be made again with previous results
rather small in the region where the above results hold, i.e[17]-
for small fields and low densities, see also Ré&f].

The calculated dynamical properties allow for the extrac-
tion of macroscopic transport coefficients. The diffusion co-

efficient is given by D=-lim._ o(v7\.(e)+\_(&)])e? We thank Bob Dorfman for helpful discussions and valu-
=(3/8)v?/v, [1], which can also be expressed in terms of theable comments. This work was supported by @wlective
Kaplan-Yorke dimension bp=-lim,_[v?h}sDky-3)]€?  and cooperative statistical physics phenomemagram of
[19]. FOM (Fundamenteel Onderzoek der Matgrie

Some comment on the calculations of the topological
pressure as a function of the temperaturelike parangter
in order here. The obtained results have to be taken with a APPENDIX. CALCULATION OF THE DYNAMICAL
pinch of salt. In Refs[16,2(Q it is shown that for the random ) ) PART'T'ON_ FUNCTION
Lorentz gas the results obtained there are restricted to in- Starting with the dynamical partition function we can de-
creasingly smaller neighborhoods @f=1 for increasing _termine the topological pressure which is given as the lead-
system size. As can be seen from ), for =1 all points N9 .s.|ngularity of the Laplace transform of the dynamical
in phase space are equally weighted. [Bor 1, though, the  Partition function.
partition function will be dominated by the largest stretching  In order to calculate the Laplace transform of the dynami-
factors, which correspond to the most unstable trajectorg@l partition function, Eq(22), we need to calculate the
bundles. That is, foB<1 stretching factors from regions in eigenfunctions and eigenvalues®t. According to Eq(27)
phase space with a high density of scatterers, and therefoige expand in powers ofe, yielding
large stretching factors, dominate. So, in the litait « it is

possible tha#Z(B,t) is dominated by trajectory bundles con- o w2 cos ¢
') = f drf do f d0+ve‘<V+Z)TT
0 -2

ACKNOWLEDGMENTS

fined to a small part of phase space. In regions of high scatf(83,z,
terer density however, subsequent scattering events cannot

be regarded as independent anymore and the distribution of 1 vr |V
free times between scatterers in these regions will be very ><5{¢— 5[9” - 0(r,0") % W]}[a cos ]
different from that for the system as a whole. With increasing ¢
system size the effects become more pronounced because the
probability of finding approximately trapping regions of high
scatterer density increases with system size.

T 7
Xy1-ez "+ e—[1-9si
{1 € cos 6" + 6224[1 9 sing"

1-B
+3 co 6*]} . (A1)

VII. CONCLUSION

In the present study we have calculated dvnamical pro The operatoﬁfﬂ has to be understood as acting on a function
P Y y P pf(49*). In order to eliminate the function we integrate over

erties for the field-driven random Lorentz gas within the . - . ~
thermodynamic formalism. In the limits of vanishing exter- 6"+f|rst tly not|C|ng+ _that we can Wr+|te6(g(0+))—5(_0+
—-6,)/9'(6;) where 65 is the root ofg(6d;) and the prime

nal field or 8 approaching unity, our results are in perfect o )
agreement with those of previous studies. denotes the derivative with respect@a Here we have

From the topological pressure we extracted various quan- 1 (en?
tities, such as the KS entropy and the topological entropy. A o) = = €7 + ., €T +
) ) . . . =—--——_cosf,+ cog26, A2
dimension spectrum was obtained by calculating the dynami- 9'(%) 2 2 " 4 $26) (A2)
cal entropy as a function of the variali#g), defined as the
derivative with respect t@ of the topological pressure. with
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+ +r . + (67)2 . +
O0p=6"—2¢+ersin G- 2 sin(26,) = w.  (A3)

Then the 0perat0?03t(,8,z, ¢*') becomes

CoS ¢

0 /2
M(B,z,6%") =f dTJ dpre (27
0 -7/2

vr |YA . (en)?
X 2\ 1+eTCOSby+
acosd¢ 2

T 7
X{l_ei COSH++EZZ1,[_2

1-8
+6 001{20")]} . (A4)

This is expanded to second order and the ope[’.ﬁtmcting
on (%) then reads

M(6%) = [MFI(6"")
= [MOF)(6") + dMD)(67) + [MP1)(67)

(A5)
N 0 72 1-B8
with [sUz(O)f](e*’):f dr do Ve—<v+z>{2LT}
0 —/2 a
X (cos ¢)Pf(6y), (A6)

R 0 72 2 1-B8
[MOF(6") = - J dr f dep v e-<v+2>{ﬂ
0 ~ml2 a

X (cos gb)ﬁg(l +pB)cos by 1(65), (A7)

R o0 72 2 1-8
[MPF](6") = f dr f de v e-<V+Z>{ﬂ]
0 —1/2

a

7?(3B%+138+8
B
X (C0Ss ¢) 5 (—2

L BB-D

p cos(203)>f(03).

(A8)

For smalle we can expand cog, and co$26,) which gives

cosfp=cod6" —2¢+ m+ersin(d" —2¢p+ )]
~—coq 0" - 2¢) - er SirP(6"' - 2¢) (A9)

and
coq26) =~ coq26" - 4¢). (A10)

Since we expand only to second ordereiit is sufficient to
expand cod, to first order because it only enters in the

PHYSICAL REVIEW EG69, 046203(2004

term of Eq.(A5). Accordingly, we only take the zeroth-
order term of co6;). Now the eigenvalueg and eigen-
functionsf can be calculated by using standard perturba-
tion theory and a Fourier series expansionffas given in
Eq. (30). To zeroth order ire we find thatf©(¢*)=const,
which we set equal to 1. For the eigenvalue we get

it iy
w®= v(—) . (A11)

a 2P(v+2)°7P F(§+1)

Inserting these results into EGA7) we get
uM=0 (A12)
B2-p)
1) g+ == M +

and (6 4+ 2) cosf'. (A13)

The procedure for the? terms is analogous. However,
when calculating the eigenvalyg? one finds an additional
contribution from[9@f®](g*'), which also has to be taken
into account. This is because of teelependent term in Eq.
(A9). Then to second order iathe eigenvalue is given by

@ = (0)(B_1)(B_2)(B_12) Al4
w = 48(r+ 2 : (A14)
In principle the eigenfunctioi®(#*) can be calculated and
will be proportional to co®6*). However, for our results
we do not need®(#*) since the only terms entering in
Eq. (31) are u9fO(¢") and Eu@fO(g").

An analogous calculation for the contracting direction

yields for the eigenvalues

1 1
. a—m“z‘m(z)r(ﬂ%>
w© = v<—) . (A15)
a 2P(v+ 2)2"31“({—; + 1)
wP=0, (A16)
(B-D(B-2)(B-8)
72 = _ 710
oo 48(v+ 2)2 (ALD
and for the eigenfunctions
1Oy =1, (A18)
’Te B2-p)
(1) -_=B= M
(g% 200+ 2) cosd", (A19)

where the bar is indicating the contracting direction. Again,
for Eq. (36) we only need the eigenfunctions up to first order
in e
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