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We analytically determine the dynamical properties of two-dimensional field-driven Lorentz gases within the
thermodynamic formalism. For dilute gases subjected to an isokinetic thermostat, we calculate the topological
pressure as a function of a temperaturelike parameterb up to second order in the strength of the applied field.
The Kolmogorov-Sinai entropy and the topological entropy can be extracted from a dynamical entropy defined
as a Legendre transform of the topological pressure. Our calculations of the Kolmogorov-Sinai entropy exactly
agree with previous calculations based on a Lorentz-Boltzmann equation approach. We give analytic results for
the topological entropy and calculate the dimension spectrum from the dynamical entropy function.
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I. INTRODUCTION

In dynamical systems theory the Lorentz gas acts as a
paradigm allowing to address fundamental issues of nonequi-
librium processes. Recently, dynamical quantities of this sys-
tem such as Lyapunov exponents or Kolmogorov-Sinai en-
tropies in a nonequilibrium steady state have been calculated
analytically[1,2]. Systems such as the Lorentz gas in a non-
equilibrium steady state can be modeled on the microscopic
level by introducing a so-called thermostat which removes
the dissipated heat from the system. Assuming that fluids can
be regarded as hyperbolic systems on a microscopic level
one can relate the dynamical quantities to viscosities or dif-
fusion coefficients[3–5]. This connection is based upon a
relation between phase space contraction rates and entropy
production.

In the 1960s and 1970s Sinai, Ruelle, and Bowen devel-
oped a formalism for dynamical system theory which due to
its striking similarity to Gibbs ensemble theory was given the
namethermodynamic formalism[6–8]. This formalism is ap-
plied to hyperbolic systems and like in ordinary statistical
physics a partition function is defined which is constructed
by giving points in phase space a particular weight. From
this a central quantity, the topological pressure, is derived
which is the dynamical system analog of the Helmholtz free
energy. From the dynamical partition function properties
such as the Kolmogorov-Sinai(KS) entropy or the topologi-
cal entropy are obtained through the pressure and its deriva-
tive with respect to a temperaturelike parameterb. Also de-
rivable are dimension and entropy spectra and, for systems
with escape, escape rates.

The paper is organized as follows. In Sec. II we briefly
recapitulate some properties of the thermodynamic formal-
ism. Section III introduces the field-driven Lorentz gas and
Sec. IV the concept of the radius of curvature. Calculations
for the field-driven random Lorentz gas within the thermo-

dynamic formalism in two spacial dimensions are presented
in Sec. V. In Sec. VI we calculate dynamical properties from
the thermodynamic pressure and we close with some con-
cluding remarks in Sec. VII.

II. THERMODYNAMIC FORMALISM

Our starting point is thedynamical partition function,
which weighs points in phase space by the local stretching
factors LsrW ,vW ,td for trajectory bundles starting at phase
space pointssrW ,vWd and extending over a timet. The stretch-
ing and contraction factors characterize the behavior of an
infinitesimal volume in phase space under the dynamics.
Typically, this volume will grow in some directions and
shrink in others. Then the local stretching factor is the factor
by which the projection of the volume onto its unstable(ex-
panding) directions will increase over timet. Similarly, the
contraction factor is the factor by which the projection of the
same volume onto its stable(contracting) direction is de-
creased over timet. Then, the partition function is defined by

Zsb,td =E dmsrW,vWdfLsrW,vW,tdg1−b, s1d

where a temperaturelike parameterb is introduced to empha-
size the similarity to ordinary statistical physics. The integra-
tion is over an appropriate stationary measure.

From Eq.(1) the topological pressurePsbd is obtained as

Psbd = lim
t→`

1

t
ln Zsb,td. s2d

On introducing the Laplace transformZsb ,zd;LhZsb ,tdj,
the calculation ofPsbd greatly simplifies. From the defini-
tion of the Laplace transform we see thatZsb ,zd only con-
verges ifz stays smaller than a particular value, the radius of
convergence, which is given byz=limt→`s1/tdln Zsb ,td
=Psbd. Thus, the topological pressure is given by the lead-
ing singularity ofZsb ,zd f7g.

In analogy to the standard procedures of statistical physics
we can define adynamical entropy function hsbd as the Leg-
endre transform of the topological pressure, i.e.,
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hsbd = Psbd − b
] Psbd

] b
. s3d

For long times the local stretching factors are approxi-
mately given by the exponent of the sum of positive
Lyapunov exponents,li, multiplied by time,L.expstoi

+lid.
Therefore, it can be shown that the entropy function defined
by Eq. (3) can be identified for special values ofb with
dynamical properties. Forb=0, hsbd equals the topological
entropyhtop whereas forb=1 it equals the KS entropyhKS
which equals the sum of positive Lyapunov exponentsoi

+li,
see for instance Refs.[4,5,9].

For systems where trajectories can escape, escape rates
can be extracted from the topological pressure. E.g., forb
=1 the topological pressurePsbd equals −g, whereg is the
escape rate while the relationship −]Psbd /]bub=1=oi

+li re-
mains valid. The intersection point ofPsbd with the b axis
can be related to the partial Hausdorff dimension, i.e., the
fractal dimension of a line across the stable manifold of the
attractor (see Ref.[10] for details), while the intersection
point of the tangent atPs1d with theb axis is associated with
the partial information dimension[10,11].

III. FIELD-DRIVEN LORENTZ GAS

We study the thermodynamic formalism for the dilute,
field-driven Lorentz gas without escape. This model consists
of two species of particles. Heavy, immobile particles of ra-
dius a are placed at random positions, while point particles
of massm and chargeq move in between them. The interac-
tion between light and heavy particles is modeled by elastic
collisions and the heavy particles are not allowed to overlap.
An external electric field introduces a force which acceler-
ates the moving particles in the direction of the field and an
isokinetic thermostat prevents the system from heating up
indefinitely. This thermostat keeps the kinetic energy and
thus the speedv of each moving particle constant[3,12].
Then, the equations of motions are given by

rẆ = vW, vẆ =
q

m
EW − avW , s4d

where a=qEW ·vW /mv2=vxe /v, with e=qE/mv. This choice
assures that the kinetic energy is kept constant. The electric
field is taken to point in thex direction.

Utilizing a Lorentz-Boltzmann equation(LBE) approach
Van Beijerenet al. have calculated the Lyapunov spectrum
of field-driven dilute Lorentz gases in two and three spacial
dimensions[1,2]. They did so by extending the usual LBE so
as to include the so-called radius of curvature(ROC) tensor
r (see Sec. IV). The resulting extended Lorentz-Boltzmann
equation(ELBE) for the probability distribution ofrW, vW, and
r reduces to the usual LBE by integrating overr. From the
ELBE the KS entropy is obtained as a steady state ensemble
average.

IV. RADIUS OF CURVATURE

In order to describe the local stretching factor entering the
partition function we have to measure the separation of two

nearby trajectories in the course of time. Sinai has given
geometric arguments relating this to the ROC[5,13–15].
Since the light particle moves ind dimensions, and in tan-
gent space the direction of the flow is neither expanding nor
contracting, the unstable manifold(the subspace of expand-
ing directions on the energy shell in tangent space) is of
dimensiond−1 (provided the driving field is not too strong).
It may be represented by the set of all infinitesimal displace-
ments in position space, orthogonal to the direction of the
flow; the stretching factor for larget may be identified with
the expansion factor of an infinitesimal volume in this sub-
space. This expansion factor in turn may be expressed in
terms of the ROC.

Figure 1 shows a schematic plot of the radius of curvature
in two spacial dimensions(in configuration space) in the
cases with and without an external field. We measure the
separation in a plane perpendicular to the reference trajec-
tory. Let the spacial difference between two trajectories be
drWstd and the difference in velocitydvWstd after some timet.
These vectors satisfy the differential equation

ddrWstd
dt

= dvWstd. s5d

The solution of this defines the ROC tensor through the re-
lationship

drWstd =
1

v
r„t,drWs0d… · dvWstd. s6d

In the absence of external fields, withdvW being constant, the
ROC tensor simply is of the formrstd=vt1+rs0d. Especially
in d=2, wherer reduces to a scalar,rstd simply is the dis-
tance of the two nearby trajectories to their mutual intersec-
tion point, as illustrated in Fig. 1. Its sign is positive if the
intersection is located in the past and negative if it is in the
future.

One sees that already under free streaming the depen-
dence of the ROC on its initial conditions becomes relatively
less important as time increases. This is even much more so,
if the free streaming is interrupted by collisions. In that case
the ROC just before and just after a collision are related in
d=2 by

FIG. 1. Illustration of the separation of two nearby trajectories
rWstd andrW8std for (a) no external field and(b) with an external field,
see text for details.
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r+
−1 = r−

−1 +
2

a cosf
, s7d

which may easily be generalized to higher dimensions
f2,16g. Here r− is the precollisional ROC,r+ the ROC di-
rectly after the collision, andf the angle between the veloc-
ity vector at the collision and the outward normal to the
scatterer at the point of incidence. Now, the point to notice is
that for dilute systems typicallyr−

−1 is of the order of the
inverse mean free path, which is much smaller than the sec-
ond term on the right-hand side of Eq.s7d. Therefore, to
leading order in the density of scatterers this term may be
ignored. This implies that the initial value ofr already gets
washed out after one collision. If one cannot use this low
density approximation, still a few collisions suffice to make
the ROC independent of its initial value. In the sequel of this
paper we will use low density approximation, so we set

r+
−1 =

2

a cosf
. s8d

Combining Eqs.s5d and s6d one finds that the stretching
factor over a timet now may be expressed in terms of the
ROC tensor as

Lstd = expFvE
0

t

dt detfr−1stdgG . s9d

From this the KS entropy may be obtained as

hKS= lim
t→`

v
t
E

0

t

dt detfr−1stdg = vkdetsr−1dlstat. s10d

The bracketk¯lstat denotes an average over a stationary
nonequilibrium distribution on phase space. Its equiva-
lence to a time average requires ergodicity of the motion
of the moving particle on the chaotic attractor. About the
validity of this even less is known than about ergodicity in
equilibrium, in the absence of a driving field. In our cal-
culations we will actually make plausible assumptions
about the time average rather than using the phase space
average.

For calculating the increase of the stretching factor mea-
sured from directly after a collision to directly after the sub-
sequent one, one has to integrate detfr−1stdg over this time
interval and insert the result into Eq.(9). ForN uncorrelated
collisions taking place over timet, the corresponding stretch-
ing factor is given by the product of theN individual stretch-
ing factors. The KS entropy is calculated by dividing the
logarithm of the stretching factor byt and then taking the
long time limit [2,5,14].

V. THERMODYNAMIC FORMALISM FOR FIELD-
DRIVEN LORENTZ GAS

In Ref. [16] Van Beijeren and Dorfman present calcula-
tions ind dimensions for the dilute random Lorentz gas with-
out an external force. There, the dynamical partition function
is calculated by assuming that subsequent collisions are com-
pletely uncorrelated. Under this assumption all free times

between subsequent collisions may be assumed to be distrib-
uted according to the same exponential function and all scat-
tering angles also follow the same simple distribution. In the
present case, where the moving particle still has constant
speed, we will make the same assumptions, but now the free
motion in between collisions is not along straight lines any-
more.

For simplicity we from now on will restrict ourselves to
the case ofd=2, although the generalization to higher di-
mensions is fairly straightforward. As in Ref.[16] we divide
up the time intervalf0,tg into subintervalsftr−1,trg, with tr
the instant of therth collision of the moving particle within
this time interval. Let the total number of collisions beN,
thent0=0 andtN+1= t. The total stretching factor can be fac-
torized into a product as

Lstd = p
r=0

N

Lr , s11d

whereLr ;Lstrd is given by Eq.s9d, with tr = tr − tr−1. For
obtaining an explicit expression for this we have to solve the
differential equation describing the time evolution of the
ROC, which is of the formf1,2g

ṙ = v + re cosu + r2e2

v
sin2 u, s12d

whereu is the angle between the velocity vectorvWstd and the
external field. As initial condition we will use the low den-
sity approximationrr+

=a cosfr /2, with fr the collision
angle of therth collision. From the equations of motion it

follows that u obeys the differential equationu̇=−e sin u,
which has the solution

ust,u+d = arccotfsinhset + kdg, k = lnfcotsu+/2dg. s13d

Here,u+=us0,ur
+d is the angle between the external field and

the velocity direction directly after therth collision, compare
Fig. 1sbd. With this solution forustd we rewrite Eq.s12d as

ṙ = v + re tanhset + kd + r2 e2

v cosh2set + kd
. s14d

We find for the ROC

rstd =
v
e

coshset + kd
sinhset + kd −

v coshk sinh k − er+

v coshk + er+ sinh k

1 + sinhset + kd
v coshk sinh k − er+

v coshk + er+ sinh k

.

s15d

Inserting this into Eq.s9d we find, to second order ine,

Lr = Lr
s1dLr

s2d, s16d

Lr
s1d =

vtr

rr+

, s17d
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Lr
s2d = expF−

etr

2
cosur

+ +
e2tr

2

24
s1 − 9 sin2 ur

+dG . s18d

Note that the above equations may also be used forr =0 but
with r0+

andu0
+ given by the initial values ofr respectivelyu

at t=0.
For obtaining the topological pressure one has to substi-

tute the above results into Eq.(11), raise this to the power
s1−bd, and average over the configurations of scatterers. For
simplifying this average it turns out to be useful to rearrange
Eq. (11) as

Lstd = vtNLN
s2dFp

r=1

N
GN−rGr0+

−1, s19d

where

Gr = Gstr,ur+1
+ ,ur

+d ;
vtr

rsr + 1d+

Lr
s2d. s20d

The reduction to the independent variables implied here fol-
lows from Eq.s8d combined with the relationship

2fr = ur
+ − ur

− ± p s21d

and ur
− may be expressed in terms ofur−1

+ and tr−1 through
Eq. s13d.

A further simplification can be made by passing to the
Laplace transformZsb ,zd of the dynamical partition func-
tion. Since, in the limit of larget, the topological pressure
equals the logarithm of the stretching factor per unit time, it
may be identified as the rightmost singularity of this Laplace
transform. It has to be real, as the stretching factor is real and
positive definite. Assuming independence of all free flight
timest j and scattering anglesf j one finds straightforwardly
that Zsb ,zd may be obtained as

Zsb,zd = o
N=0

` E duN
+
¯E du0

+M̂ fsb,z,uN
+ d

3 p
r=1

N
M̂sb,z,uN−r+1

+ ,uN−r
+ dr0+

−1

= o
N=0

`

hM̂ fM̂
Nr0+

−1jsb,z, ·d

= hM̂ ff1 − M̂g−1r0+

−1jsb,z, ·d. s22d

Here the operatorsM̂ f and M̂ are defined as the Laplace
transforms of the configurational averages of the appropriate
powers ofvtNLN

s2d and Gstr ,ur+1,urd, respectively. Specifi-
cally, one has

M̂sb,z,u+8,u+d =E
0

`

dtne−sz+ndtE
−p/2

p/2

df
cosf

2

3dFf −
1

2
fu+8 − ust,u+d ± pgG

3 fGst,u+8,u+dg1−b, s23d

M̂ fsb,z,uN
+ d = VE

0

`

dtNne−sz+ndtN svtNLN
s2dd1−b s24d

with ust ,u+d defined in Eq.s13d. The operatorsM̂ andM̂ f

are defined by

hM̂fjsb,z,u+8d =E du+M̂sb,z,u+8,u+dfsu+d, s25d

hM̂ f fjsb,z, ·d =E du+M̂ fsb,z,u+dfsu+d, s26d

where integration limits of theu+ integrations depend on the
sign of p in the d function in Eq.s23d and are given in the
Appendix. Further,1 denotes the unit operator andf¯g−1 the
operator inverse.

From the above equations the rightmost singularity ofZ
readily follows as the value ofz for which the largest eigen-

value of the operatorM̂ equals unity. For zero field this
eigenvalue problem is trivial: the leading eigenfunction is the
unit function, the eigenvalue is obtained easily, and the re-
sulting topological pressure coincides with that found in Ref.
[16]. For small nonzero field one has to proceed by expand-

ing M̂, the leading eigenfunctionf, and the leading eigen-
valuem in powers of the field strength, i.e.,

M̂ = M̂s0d + eM̂s1d + e2M̂s2d, s27d

f = f s0d + ef s1d + e2f s2d, s28d

m = ms0d + ems1d + e2ms2d. s29d

Then M̂f =mf is solved by standard perturbation methods
using a Fourier series expansion forf, i.e.,

f sid = ao
sid + o

n=1

`

an
sid cossnu+d + o

n=1

`

bn
sid sinsnu+d, s30d

with i =0,1,2.
The details of the solution of this eigenvalue equation are

given in the Appendix. Here we just give the resulting eigen-
valuem to second order in the field strength,

msb,zd = ms0dsb,zd + e2ms2dsb,zd

= nSv
a
D1−bGS1

2
DGSb + 1

2
DGs2 − bd

2bGSb

2
+ 1Dsn + zd2−b

3F1 + e2sb − 1dsb − 2dsb − 12d
48sn + zd2 G . s31d

Now the Laplace transform of the dynamical partition func-
tion is of the form
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Zsb,zd = Csb,zdf1 − msb,zdg−1, s32d

where the additional prefactorC, originating from

M̂ fsb ,z, ·d, contains no singularities.
If we also want to obtain information about the contract-

ing direction, e.g., the negative Lyapunov exponents, we
need to know the local contraction factors. For this we may
consider the time reversed motion. Note that we will con-
sider the time reversed motion on the attractor for the “for-
ward in time motion” and not the attractor of the time re-
versed motion. The contraction factors can be calculated by
considering contracting trajectory bundles instead of expand-
ing ones[14], see Fig. 2. We keep the same notation as for
the forward in time motion, therefore collisionr precedes
collision r −1 in the time reversed motion. Hence the bound-
ary condition for rstd in Eq. (14) is rstd=r−=a cosf /2,
wherer− specifies the ROC directly before a collision(in the
forward in time motion). The ROC still evolves in time ac-
cording to Eq.(14) for 0ø tøt. Like the expansion factors,
one calculates the local contraction factors by using Eq.(9).
To second order ine this yields

Lr
− = Lr

s1d−Lr
s2d−, s33d

Lr
s1d =

rr−

vtr
, s34d

Lr
s2d = expF−

etr

2
cosur

+ +
e2tr

2

24
s1 + 3 sin2ur

+dG , s35d

with rr−
=a cosfr /2. In the limit of vanishing external field

the contraction factor is just the inverse of the stretching
factor. This is no longer true if we apply an external field.
We see from Eqs.s18d and s35d that differences occur in
the field dependent exponential.

To obtain a topological pressure for the contracting direc-
tions we have to solve a similar eigenvalue problem as for
the expanding directions. Since for the field-free case the
inverse of the contraction factor equals the stretching factor,
we solve the eigenvalue problem for the inverse of the con-
traction factor. The resulting eigenvalue, which has to be set
equal to unity again, to second order in field strength be-
comes

m−sb,zd = nSv
a
D1−bGS 1

2DGSb + 1

2
DGs2 − bd

2bGSb

2
+ 1Dsn + zd2−b

3F1 − e2sb − 1dsb − 2dsb − 8d
48sn + zd2 G . s36d

Details are given again in the Appendix.
In the following section we will discuss the resulting to-

pological pressure and related properties.

VI. DYNAMICAL PROPERTIES

As stated in the preceding section the topological pressure
follows as the value ofz for which msb ,zd=1. To second
order ine this leads to

Psbd = P0sbd − e2sb − 1dsb − 12d
48fP0sbd + ng

, s37d

where

P0sbd = 3nSv
a
Ds1−bdGs2 − bdGs 1

2dGSb + 1

2
D

2bGSb

2
+ 1D 4

1/s2−bd

− n

s38d

is the field-free value of the topological pressure. The dy-
namical entropy then follows from Eq.s3d as

hsbd = Psbd − b
] Psbd

] b

= h0sbd −
e2

48fP0sbd + ng

3F12 −b2 +
bsb − 1dsb − 12d

P0sbd + n

] P0sbd
] b

G , s39d

where againh0sbd is the field-free value of the dynamical
entropy.

We can perform similar calculations for the contracting
direction. Then we obtain the equivalent of the topological
pressure and the dynamical entropy. Note that in the limit of
vanishing external field the topological pressure for the con-
tracting direction equals the one for the expanding direction.
We obtain

P−sbd = P0sbd + e2sb − 1dsb − 8d
48fP0sbd + ng

, s40d

h−sbd = h0sbd +
e2

48fP0sbd + ng

3F8 − b2 +
bsb − 1dsb − 8d

P0sbd + n

] P0sbd
] b

G . s41d

Figure 3 shows the topological pressure and the dynami-
cal entropy as functions of the parameterb. As expected for

FIG. 2. Illustration of expanding and contracting trajectory
bundles for the two-dimensional field-driven random Lorentz gas.
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a system without escape,Psbd vanishes forb=1. We further
see thatPsbd is a convex function.

A number of interesting dynamical quantities are related
to the dynamical entropyhsbd for special values ofb. The
KS entropyhKS is given by the dynamical entropy forb=1.
From Eq.(39) we obtain

hKS= l+ = nF1 − g − lnSan

v
DG −

11

48

e2

n
. s42d

For the negative Lyapunov exponent we obtain, from Eq.
s41d,

− h−s1d = l− = − nF1 − g − lnSan

v
DG −

7

48

e2

n
. s43d

As one should expect, these results coincide with those of
previous calculations[1,2] based on the same assumptions
(basically, no correlations between subsequent collisions).
But here the results are extended to general values ofb.

New results follow for the topological entropy, which is
given by the dynamical entropy forb=0. From Eq.(39) we
obtain

htop = Fpnv
a
G1/2

− n −
e2

4
F a

pnv
G1/2

. s44d

That is, we obtain the zero-field limit results given in Ref.
f16g with a correction which is quadratic in the field strength.

The equivalent of the topological entropy for the contract-
ing direction is obtained from Eq.(41) for b=0, i.e.,

h−s0d = Fpnv
a
G1/2

− n +
e2

6
F a

pnv
G1/2

. s45d

We further calculate the dynamical entropy as a function
of Esbd;−]Psbd /]b [11]. Esbd equals the average of the
logarithm of the local stretching factors,kln Llb, where the
subscriptb refers to the fact that in phase space initial points
are weighted according to the stretching factors raised to the
powers1−bd. Forb=1 this yields the average of the positive
Lyapunov exponent.

The maximum entropy, which is the topological entropy,
is always found forb=0 as can be seen from Eq.(3). The KS
entropy is given by the value forb=1, where hfEsbdg
=Esbd, again according to Eq.(3). In Fig. 4 a plot ofhfEsbdg
vs Esbd is given. But notice that the descending parts of
hfEsbdg correspond to values ofbø0.

The dynamical entropy is related to a dimension spectrum
Dsad with a=Esbd, through Dsad=hsad /a [11]. Figure 5
shows the dimension spectrumDfEsbdg. From this one can
find the partial Hausdorff dimensionDH as the maximum of
DfEsbdg. For systems where trajectories cannot escape,DH

equals 1. This is clear because the maximum ofDfEsbdg is
obtained forPsbd=0, i.e.,b=1, for systems without escape.
Note that possible values of partial dimensions are restricted
to the intervalf0,1g, see Sec. II. Furthermore, the full Haus-
dorff dimension isDH

full øoi=1
3 DH

sid where theDH
sid are the par-

tial Hausdorff dimensions corresponding to all stable and
unstable manifolds[18].

The above results for the dynamical entropy allow to cal-
culate, respectively approximate, another dimension, the
Kaplan-Yorke dimensionDKY. In general the Kaplan-Yorke

FIG. 3. The topological pressurePsbd and thedynamicalen-
tropy hsbd for small fields and small densities of scatterers, i.e.,e
=0.001,n=0.001,v=1,a=1.

FIG. 4. Dynamical entropyhfEsbdg as a function ofEsbd
=−]Psbd /]b for e=0.001, n=0.001, a=1, and v=1. The lower
panel is a closeup of the boxed region of the upper panel.

FIG. 5. Dimension spectrum fore=0.001,n=0.001,a=1, and
v=1. The maximum occurs forb=1.
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dimension is given byDKY=n+oi=1
n li / uln+1u where n is

given by the largest value for whichoi=1
n li ù0. Thus for the

two-dimensional Lorentz gas with constant energy we have
one exponent equal to 0, one positive, and one negative, i.e.,
we haveDKY=2+l+/ ul−u. There are only three exponents
since the system is restricted to a three-dimensional hyper-
plane by the thermostat. From the KS entropies we see that
DKY<3−3e2/ s8hKS

0 nd, wherehKS
0 is the KS entropy without

external field. Since the exact full Hausdorff dimension and
therefore also the full information dimension cannot be ex-
tracted from the partial dimensions we assume that the
Kaplan-Yorke conjecture still holds. This is consistent with
our present knowledge: becauseDH

full øoi=1
3 DH

sid=3 we still
can haveDH

full =DKY. Let us further mention that the dimen-
sional loss due to the external field, as expressed byDKY, is
rather small in the region where the above results hold, i.e.,
for small fields and low densities, see also Ref.[19].

The calculated dynamical properties allow for the extrac-
tion of macroscopic transport coefficients. The diffusion co-
efficient is given by D=−lime→0sv2fl+sed+l−sedgde−2

=s3/8dv2/n, [1], which can also be expressed in terms of the
Kaplan-Yorke dimension byD=−lime→0fv2hKS

0 sDKY−3dge−2

[19].
Some comment on the calculations of the topological

pressure as a function of the temperaturelike parameterb is
in order here. The obtained results have to be taken with a
pinch of salt. In Refs.[16,20] it is shown that for the random
Lorentz gas the results obtained there are restricted to in-
creasingly smaller neighborhoods ofb<1 for increasing
system size. As can be seen from Eq.(1), for b=1 all points
in phase space are equally weighted. Forb,1, though, the
partition function will be dominated by the largest stretching
factors, which correspond to the most unstable trajectory
bundles. That is, forb,1 stretching factors from regions in
phase space with a high density of scatterers, and therefore
large stretching factors, dominate. So, in the limitt→` it is
possible thatZsb ,td is dominated by trajectory bundles con-
fined to a small part of phase space. In regions of high scat-
terer density however, subsequent scattering events cannot
be regarded as independent anymore and the distribution of
free times between scatterers in these regions will be very
different from that for the system as a whole. With increasing
system size the effects become more pronounced because the
probability of finding approximately trapping regions of high
scatterer density increases with system size.

VII. CONCLUSION

In the present study we have calculated dynamical prop-
erties for the field-driven random Lorentz gas within the
thermodynamic formalism. In the limits of vanishing exter-
nal field or b approaching unity, our results are in perfect
agreement with those of previous studies.

From the topological pressure we extracted various quan-
tities, such as the KS entropy and the topological entropy. A
dimension spectrum was obtained by calculating the dynami-
cal entropy as a function of the variableEsbd, defined as the
derivative with respect tob of the topological pressure.

Van Beijeren and Dorfman have calculated KS entropies
and topological entropies for general dimensionsd for the
random Lorentz gas without an external field[16]. Presently
we work on the extension of the present study to higher
dimensions. Subtleties exist because an external field com-
plicates the analytic calculation of the determinant of the
inverse of the ROC tensor for higher dimensions quite a bit.
However, the stretching factors can also be calculated by
looking at the time evolution of the deviations in velocity,
see Ref.[14].

We also extended our studies to systems with open bound-
aries[21]. This allows for using the thermodynamic formal-
ism to study the escape rate formalism[22], as well as di-
mension spectra for systems with escape. In the limit ofb
→1 comparison can be made again with previous results
[17].
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APPENDIX. CALCULATION OF THE DYNAMICAL
PARTITION FUNCTION

Starting with the dynamical partition function we can de-
termine the topological pressure which is given as the lead-
ing singularity of the Laplace transform of the dynamical
partition function.

In order to calculate the Laplace transform of the dynami-
cal partition function, Eq.(22), we need to calculate the

eigenfunctions and eigenvalues ofM̂. According to Eq.(27)
we expandM̂ in powers ofe, yielding

M̂sb,z,u+8d =E
0

`

dtE
−p/2

p/2

dfE du+ne−sn+zdtcosf

2

3dFf −
1

2
fu+8 − ust,u+d ± pgGF 2vt

a cosf
G1−b

3H1 − e
t

2
cosu+ + e2 t2

24
f1 − 9 sinu+

+ 3 cos2 u+gJ1−b

. sA1d

The operatorM̂ has to be understood as acting on a function
fsu+d. In order to eliminate thed function we integrate over
u+ first by noticing that we can writed(gsu+d)=dsu+

−u0
+d /g8su0

+d where u0
+ is the root of gsu0

+d and the prime
denotes the derivative with respect tou+. Here we have

g8su0
+d =

1

2
−

et

2
cosu0

+ +
setd2

4
coss2u0

+d sA2d

with
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u0
+ = u+8 − 2f + et sin u0

+ −
setd2

4
sins2u0

+d ± p. sA3d

Then the operatorM̂sb ,z,u+8d becomes

M̂sb,z,u+8d =E
0

`

dtE
-p/2

p/2

dfne−sn+zdtcosf

2

3F 2vt

a cosf
G1−b

2S1 + et cosu0
+ +

setd2

2
D

3H1 − e
t

2
cosu+ + e2 t2

24
f− 2

+ 6 coss2u+dgJ1−b

. sA4d

This is expanded to second order and the operatorM̂ acting
on fsu+d then reads

M̂fsu+d = fM̂fgsu+8d

= fM̂s0dfgsu+8d + efM̂s1dfgsu+8d + fe2M̂s2dfgsu+8d
sA5d

with fM̂s0dfgsu+8d =E
0

`

dtE
−p/2

p/2

df n e−sn+zdtF2vt

a
G1−b

3scosfdbfsu0
+d, sA6d

fM̂s1dfgsu+8d = −E
0

`

dtE
−p/2

p/2

df n e−sn+zdtF2vt

a
G1−b

3scosfdb t

2
s1 + bdcosu0

+ fsu0
+d, sA7d

fM̂s2dfgsu+8d =E
0

`

dtE
−p/2

p/2

df n e−sn+zdtF2vt

a
G1−b

3scosfdbt2

2
S3b2 + 13b + 8

24

+
bsb − 1d

8
coss2u0

+dD fsu0
+d. sA8d

For smalle we can expand cosu0
+ and coss2u0

+d which gives

cosu0
+ = cosfu+8 − 2f ± p + et sinsu+8 − 2f ± pdg

< − cossu+8 − 2fd − et sin2su+8 − 2fd sA9d

and

coss2u0
+d < coss2u+8 − 4fd. sA10d

Since we expand only to second order ine it is sufficient to
expand cosu0

+ to first order because it only enters in thee

term of Eq. sA5d. Accordingly, we only take the zeroth-
order term of coss2u0

+d. Now the eigenvaluesm and eigen-
functions f can be calculated by using standard perturba-
tion theory and a Fourier series expansion forf as given in
Eq. s30d. To zeroth order ine we find that f s0dsu+d=const,
which we set equal to 1. For the eigenvalue we get

ms0d = nSv
a
Ds1−bdGs2 − bdGS1

2
DGSb + 1

2
D

2bsn + zd2−b GSb

2
+ 1D . sA11d

Inserting these results into Eq.sA7d we get

ms1d = 0 sA12d

and f s1dsu+d = −
bs2 − bd
4sn + zd

cosu+. sA13d

The procedure for thee2 terms is analogous. However,
when calculating the eigenvaluems2d one finds an additional

contribution fromfM̂s0df s1dgsu+8d, which also has to be taken
into account. This is because of thee-dependent term in Eq.
(A9). Then to second order ine the eigenvalue is given by

ms2d = ms0d sb − 1dsb − 2dsb − 12d
48sn + zd2 . sA14d

In principle the eigenfunctionf s2dsu+d can be calculated and
will be proportional to coss2u+d. However, for our results
we do not needf s2dsu+d since the only terms entering in
Eq. s31d are ms0df s0dsu+d and e2ms2df s0dsu+d.

An analogous calculation for the contracting direction
yields for the eigenvalues

m̄s0d = nSv
a
Ds1−bdGs2 − bdGS1

2
DGSb + 1

2
D

2bsn + zd2−bGSb

2
+ 1D , sA15d

m̄s1d = 0, sA16d

m̄s2d = − m̄s0d sb − 1dsb − 2dsb − 8d
48sn + zd2 sA17d

and for the eigenfunctions

f̄ s0dsu+d = 1, sA18d

f̄ s1dsu+d = −
bs2 − bd
4sn + zd

cosu+, sA19d

where the bar is indicating the contracting direction. Again,
for Eq. s36d we only need the eigenfunctions up to first order
in e.
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